Scientific breakthroughs don’t happen every day. But with the TIBCO Spotfire® platform, they just might happen more often. TIBCO Spotfire® software visualizes your data in stunning, impactful analyses—giving you immediate insights and even answering questions you haven’t posed yet.

With such a powerful tool, you can take complete control of your data:

- Combine data from multiple sources—chemical structures, text, numbers, images, chemical properties, biological assays, and more.
- Identify new relationships, isolate significant outliers, and easily spot trends and patterns.

TIBCO Spotfire® software connects to data sources with just a few clicks—and runs visualizations instantly. It’s that easy.

Download your free trial and get started on your next breakthrough today.
www.perkinelmer.com/spotfire-scientificcomputingworld
There is a paradox at the heart of this year’s Laboratory Informatics Guide. On the one hand, we have an article showing how technology developed for the consumer market can help drive down costs and improve efficiencies in the work of the analytical laboratory. But we also have an article lamenting how the sort of information sharing that consumers take for granted – think Flickr or Facebook – is currently impossible in laboratory informatics.

For very good reasons, change tends to be slow in this discipline. No one can play with electronic systems to see how to make them more efficient or cheaper – not if those systems have to conform to regulations issued by the US Food and Drug Administration and counterpart bodies in other countries. Change has to be carefully orchestrated.

However, the pressure for change never goes away. Analytical laboratories, whether in discovery or quality control, have to justify their cost and demonstrate to higher management that costs are being driven down.

As Robert Roe’s article on page 26 demonstrates, sometimes the change comes from technologies developed in entirely different spheres for entirely different purposes. Mobile phones and tablet computers, developed for the consumer market, are forcing informatics vendors to modify their systems to allow for the input, processing and analysis of data through these devices.

Peter Boogaard reports on the progress being made towards the integrated and paperless laboratory on page 4. However, the lack of common standards for interchanging laboratory data is an obstacle to the further development of informatics and progress has been frustratingly slow, as John Trigg discusses on page 10.

So this year, the glass is half-full. Let us hope that by the time next year’s Laboratory Informatics Guide is published, we can report that the cup is brimming over!
Joining up the laboratory

Peter Boogaard reviews efforts to make the laboratory an integrated operation

It is easier to get data into scientific databases than to get valuable information out of it. For years, we have been spending time and money to integrate systems and processes in the laboratory’s knowledge value chain. Many laboratory integration projects are under pressure to deliver on their expectations, as defined at the kick-off of. So why is it that laboratory integration is so difficult? What are the obstacles to creating value for the consumers of the laboratory data? Do we know what these users need and how they would like to consume this information?

Imagine that in the music world, each label has its own proprietary music file format. How would you be able to share music? By default, standards make it easier to create, share, and integrate data. Do we know the requirements of such a data standard? What about managing metadata-controlled vocabularies? Data standards are the rules by which data are described and recorded. In order to share, exchange, and understand data, we must standardise the format (data container) as well as the meaning (metadata/context). As of today, there is no unified scientific data standard in place to support heterogeneous and multi-discipline analytical technologies. There have been several attempts but they are limited in scope, not extensible or incomplete, resulting in recurring, cumbersome and expensive software customisations.

PAY ATTENTION TO THE CONSUMER OF THE DATA

Integrating laboratory instruments started when instrument vendors, such as Perkin-Elmer and Beckmann Instruments, created the first laboratory information management system (LIMS) software, in the early 1980s. The initial objective was to support the laboratory manager with tools to create simple reporting capabilities to enable the creation of simple certificate of analysis (CoA) reports. These systems were initially designed to support a single consumer, namely the scientists and lab managers. In today’s world, consumers of laboratory data can be found across the entire product lifecycle, and may include external organisations such as CROs and CMOs (Table 1). A different mind-set is required to adapt to this expanded view of the world. It is critical to first analyse who these new lab-data consumers are, and get an understanding of what their objectives are. Often forgotten, but as important, is to investigate what their perspective is on usability. The newcomers may be a non-technical audience! Stephen Covey phrased it very nicely: ‘Seek first to understand.... And then to be understood.’ It may sound obvious, but it still remains a valuable statement before starting any automation project.

Stephen Covey phrased it very nicely: ‘Seek first to understand.... And then to be understood.’ It may sound obvious, but it still remains a valuable statement before starting any automation project.

<table>
<thead>
<tr>
<th>Consumer</th>
<th>Objective</th>
<th>Impact / benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>Assure secure instant access to medical data for doctors.</td>
<td>Better healthcare at lower cost</td>
</tr>
<tr>
<td>Fellow scientist</td>
<td>Re-use experimental data and leverage learning. Higher efficiency and quality. Consistent meta and context data</td>
<td>Higher efficiency and quality</td>
</tr>
<tr>
<td>Legal</td>
<td>Protect company IP</td>
<td>Consistent externalisation processes (CROs)</td>
</tr>
<tr>
<td>Finance</td>
<td>Understand overall life-cycle cost of operation</td>
<td>Holistic overall view</td>
</tr>
<tr>
<td>Customer care</td>
<td>Product complaints and product investigations</td>
<td>Secure branding image of company</td>
</tr>
<tr>
<td>Regulation</td>
<td>Faster responses to compliance inquiries</td>
<td>Simpler mechanism to audit heterogeneous scientific data</td>
</tr>
<tr>
<td>Management</td>
<td>Identify areas for continuous improvement in process. Reduce costs</td>
<td>Risk-based information across heterogeneous data systems</td>
</tr>
<tr>
<td>Stability labs</td>
<td>Simpler mechanism to create e-submissions. Ability to submit standardised e-stability data packages</td>
<td>Faster responses during studies, increased efficiency</td>
</tr>
<tr>
<td>CRO/CMO</td>
<td>Focus on lowering cost/analysis by decreasing IT complexity and overhead</td>
<td>Acceleration move from paper to ‘paper-on-glass’</td>
</tr>
<tr>
<td>IT</td>
<td>Reduce bespoke/custom systems. Consolidation of systems. Reduce costs</td>
<td>Unified systems. Simplify IT processes</td>
</tr>
</tbody>
</table>

Table 1: Selected consumers of laboratory information data
Secure and multidisciplinary enterprise knowledge management solutions

Web-based platform designed to enable real-time collaborative research internally and with CROs

Search, browse and share structured and unstructured data stored in multiple and diverse data sources

BROWSER
- A tool for integrating, querying and browsing multiple data sets at once
- Images as well as chemical, biological, analytical, and many other types of data can be unified and presented to users in a single view
- Schedule searches and automatic trigger email notifications

REGISTER AND BIORegister
- Adaptable chemicals and biologicals registration systems
- Designed to meet specific requirements of scientists, regulatory officials and administrators in education, government and industry

VORTEX
- Scientific data analysis and visualization solution
- Designed to dynamically import, combine, mine and analyse large datasets including chemical structures, biological assays, text and numeric data
- Includes a set of scientific property calculators and functionalities designed to assist scientists from diverse disciplines

STUDIES NOTEBOOK (ELN)
- Multi-discipline, highly customisable ELN
- Configured to fulfil the informatics requirements of different laboratories within an organisation
- Integrated with chemical registration and sample inventory tools
- Designed to capture and manage all types of biological studies
- Incorporates a powerful plate management

![Figure 2: Studies Notebook for Chemistry](image)

![Figure 3: Studies Notebook for Biology](image)

DOTMATICS FOR OFFICE
- Provides chemical intelligence to Excel, Word, Outlook and PowerPoint
- Speed up report writing with preformatted paragraphs or tables of chemistry data

To learn more about Dotmatics’ solutions contact us at info@dotmatics.com

www.dotmatics.com
For the scientific researcher, the ability to record data, make observations, describe procedures, include images, drawings and diagrams and collaborate with others to find new chemical compounds, biological structures, without any limitation, requires a flexible user interface.

For the QA/QC analyst or operator, the requirements for an integrated laboratory are quite different. A simple, natural-language based platform to ensure that proper procedures are followed will be liked.

To investigate a client’s complaint professionally, the customer care employee requires a quick and complete dashboard report to look at metrics for all cases, assignments, and progress in real-time, by task, severity, event cause, and root cause. The devil is in the detail, and that’s where the laboratory data may give significant insights.

Legal: Instead of saying ‘we saw that a couple of years ago, but we don’t remember much about it’, sensitive information can searched and retrieved, including archives.

During regulatory inspections ‘show me all the data during this time frame, which raw material batches were involved and show me all the details’.

HETEROGENEOUS SCIENTIFIC CHALLENGES
The lack of data standards is a serious concern in the scientific community. It may seem a boring topic these days, but the need for standardisation in our industry, has never been higher. Without such standards, automating data capture from instruments or data systems can be challenging and is expensive. Initiatives such as the Allotrope Foundation are working hard to address these badly needed common standards.

The Allotrope Foundation is an international not-for-profit association of biotech and pharmaceutical companies building a common laboratory information framework for an interoperable means of generating, storing, retrieving, transmitting, analysing and archiving laboratory data, and higher-level business objects such as study reports and regulatory submission files. The deliverables from the foundation, sponsored by industry leaders such as Pfizer, Abbott, Amgen, Baxter, BI, BMS, Merck, GSK, Genentech, Roche and others, are an extensible framework that defines a common standard for data representation to facilitate data-processing, data-exchange, and verification. One of the ultimate goals is to eliminate widespread inefficiencies in laboratory data management, archival, transmittal, and retrieval, and to support a start-to-finish product quality lifecycle, which would enable cross-functional collaboration between research, development, quality assurance and manufacturing.

The framework will include metadata dictionaries, data standards, and class libraries for managing analytical data throughout its lifespan.

<table>
<thead>
<tr>
<th>Why traditional hierarchical was initially abandoned</th>
<th>The SQL a success story</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex architecture</td>
<td>Extensible open architecture</td>
</tr>
<tr>
<td>Slow responses</td>
<td>Split physical & meta data</td>
</tr>
<tr>
<td>Vendor bound</td>
<td>Product independent</td>
</tr>
<tr>
<td>Inflexible and fixed data schemas</td>
<td>User definable flexible ad-hoc queries capabilities</td>
</tr>
<tr>
<td>Required mindset change</td>
<td>Availability of faster computers and networks</td>
</tr>
<tr>
<td>Invasive technology</td>
<td>Single database language</td>
</tr>
</tbody>
</table>

GLASS HALF FULL OR HALF EMPTY?
The deployment of computerised database systems started in the 1960s, when the use of corporate computers became mainstream. There were two popular database models in this decade: a network model called CODASYL; and a hierarchical model called IMS. In 1970, Ted Codd (IBM) published an important paper to propose the use of a relational database model. His ideas changed the way people thought about databases. In his model, the database’s schema, or logical organisation, is disconnected from physical information storage, and this became the standard principle for database systems. Several query language were developed, however the structured query language, or SQL, became the standard query language in the 1980s and was embraced by the...
How to Buy a LIMS Guide

Start your progression to professional data and record management. Whether you are purchasing your first LIMS or replacing an existing LIMS, our FREE guide will help you find the right solution.

Contact us on +44 (0) 118 984 0610 or visit us at www.autoscribeinformatics.com

Data Standards. Today.

Solutions for vendor-independent analytical data management, long-term archival and collaboration.

Collect data from your instruments and bring it into an open standard format. Review, annotate and share it - within your organization and with your external partners. Integrate it with your LIMS and ELN. Analyze and report it. Build a stable long-term archive. Based on the emerging AnIML standard.

Available today.

Are you ready?

BSSN Software
The benefits of open data standards

- entire industry. Vendor specific proprietary extensions (e.g. PL/SQL) were allowed in the concept, allowing individual vendors to extend capabilities.

Now back to the laboratory. The current situation is that there is no framework for scientific data standards. Formats are vendor bound, product dependent, and in many cases based upon a closed architecture and are complex in nature. There are plausible reasons why, at this moment, our industry has no general accepted raw-data and metadata standards, but should we not learn from other industries and adopt best practices?

The Analytical Information Markup Language (AnIML) is the emerging ASTM XML standard for analytical chemistry data. The project is a collaborative effort between many groups and individuals and is sanctioned by the ASTM subcommittee E13.15. An AnIML is a standardised data format that allows for storing and sharing of experimental data. It is suitable for a wide range of analytical measurement techniques. AnIML documents can capture laboratory workflows and results, no matter which instruments or measurement techniques were used.

E-Workbook Suite (IDBS) allows spectra files to be dropped in from the experiment whereby they are automatically converted to AnIML and rendered. The rendering application then allows the scientist to annotate the spectra with searchable chemical structures, text, hyperlinks to other systems and records. The AnIML data is also indexed alongside everything else allowing specific searching of metadata and properties. These processes are non-invasive meaning that the originals raw data files are also kept.

An application programming interface (API) specifies how some software components should interact with each other, allowing customers and third parties to extend the types of spectra that are supported by writing new raw data to AnIML converters or plug-in in third party components.

Other examples of changes in the way laboratories may operate in the future relate to how balance and titration instrument vendors are increasing the value of their instruments by implementing approved and pre-validated methods in their instruments. This may sound a small step, but it may have a significant impact on validation efforts in the laboratory and manufacturing operations, such as fewer points of failure during operation, less customisation of software and better documentation.

The desire to convert manufacturing processes from traditional batch-oriented processes to a continuous operation has accelerated process analytical techniques (PAT) technologies as a way to create sustainable and flexible approaches for manufacturing operations. PAT is expected to grow significantly in the next decade. Over time, in-line, @line and on-line analysis will complement and potentially substitute off-line (batch oriented) laboratory manufacturing processes. International regulatory authorities such as ICH, FDA and ISPE are evaluating these new processes intensively and developing new workflows. These processes will have a high impact on how QA/QC laboratories will operate in next decade. International industry standards such as ANSI/ISA-88 (covering batch process control) and ANSI/ISA-95 (covering automated interfaces between enterprise and control systems), are commonly used in manufacturing. By

Table 3: Applying standards requires a different mindset

<table>
<thead>
<tr>
<th>Glass half empty</th>
<th>Glass half full</th>
</tr>
</thead>
<tbody>
<tr>
<td>The market is too disperse</td>
<td>Technologies are emerging rapidly</td>
</tr>
<tr>
<td>Technology not available</td>
<td>XML and AnIML are accepted as standards</td>
</tr>
<tr>
<td>Vendor protection</td>
<td>Empowered customers</td>
</tr>
<tr>
<td>Poor performance</td>
<td>Consistent unified long time archive process</td>
</tr>
</tbody>
</table>

References

1. The 7 Habits of Highly Effective People – Stephen Covey 1990
3. PL/SQL (Procedural Language/Structured Query Language) is Oracle Corporation’s procedural language extension for SQL and the Oracle relational database
5. Technology Management In The Age Of The Customer - Forrester research 2013
incorporating these standards, scientists will be able to mine information from development and manufacturing for improved process and product design. In addition, information is more readily transferable between systems. For example, a recipe delivered in early development can be rapidly transferred to a lab execution system for API manufacture and then to a method execution system for mainstream manufacturing. ERP and MES applications are using these standards and it is very likely that integrated laboratory data management capabilities will be included within their software capabilities.

CONCLUSION

Empowered customers are disrupting every industry. Technology managers must broaden their agenda to consider not just infrastructure and traditional internal IT processes, but also activities to ensure they deliver value for their ‘client’. The power of an integrated laboratory environment is its ability to find detailed answers to support the overall business process. It is pure waste to perform labour-intensive hunting for information across multi-vendor, multi-technique databases, manual transcription checking and to manually create reports. Having a common industry standard framework will decrease process variability resulting in better quality and overall consistency. Non-invasive processes have proven to be successful in other industries. It is now up to the industry, regulatory bodies and vendors of scientific instrumentation and software platforms to make it happen. Integrating laboratory information really means integrating scientific data collected in the laboratory and beyond. Time will tell if this industry has been able to adopt such a strategy.

Peter Boogaard is an independent laboratory informatics consultant.
Why can ordinary consumers share their data when the laboratory informatics community cannot? Sharing and collaboration are becoming second nature in the consumer world where the ability to communicate and transfer data over the web has become a routine part of everyday life, to the point where the terms ‘upload’ and ‘download’ are part of everyday vocabulary. A simple example is the ability to take a photograph on a camera phone, and immediately upload it to a photo-sharing site, or email it, or ‘message’ it or tweet it. The ability to do this is totally dependent on standards; the internet provides the infrastructure; wi-fi or telecoms provide the messaging; and the device (camera/phone) generates the data (photo) in a format that can be used by other applications. It’s a process everyone takes for granted, without having to worry about the data format of the photo and whether the recipient will be able to open it. It may be thought a simplistic example, particularly when compared to the complexity of laboratory systems that serve an extensive range of measurement and other services, but the underlying principle paints a vivid picture of how laboratory systems ought to work more efficiently and effectively if there are common standards for exchanging data. On the other side, the vendors argue that standards would constrain innovation in the development of tools for capturing and processing data. In the background is a more political viewpoint: proprietary data formats facilitate a commercial ‘lock-in’ for the vendors, and the adoption of open data standards would disrupt the marketplace, not only for the vendors, but also for the third-party systems’ integrators.

Few people could argue against the benefits of data standards. Laboratories would welcome the ability to acquire data and then process it, view it, store it, share it, re-analyse it, and preserve it without the constraints of proprietary data-capture software and integration tools. The advantages include not only ease of use, but also the reduction in costs associated with third party and custom solutions to interface laboratory devices and systems. A less obvious benefit is the ability to archive data in a human-readable format over the long term. One of the consequences of the transition from paper to digital technologies is that we are going into the unknown, and we will become totally dependent on technology in order to access electronic records. Basically we will no longer have any physical artefacts that represent our accumulated records of laboratory experimentation and their outcomes. It will all be digital, the IT industry has a poor track record when it comes to digital preservation.

However, the long-term preservation of electronic records does present one example of where a standard – PDF or PDF/A – has been adopted in the laboratory world. However, electronic document standards, such as PDF and PDF/A, have a very different purpose from that of data interchange standards. With regard to the write-up of an experiment, PDF or PDF/A can preserve a rendition of the data generated in the experiment, but does not preserve the data itself. In order to preserve the data and to maintain the capability to use and re-use it over the long term, then a data interchange standard is necessary.

One of the consequences of the transition from paper to digital technologies is that we are going into the unknown, and we will become totally dependent on technology.

The transition from paper to electronic lab notebooks created the need to be able to preserve, for several decades, the integrity, authenticity, and readability of experimental records to support business and scientific requirements. PDF and PDF/A both have ISO registration as open standards, and are typically used to provide the electronic rendition of the experimental ‘document’. The primary purpose is the preservation of a flat document, including the text, fonts, graphics, and other information...
needed to display it. PDF/A is a version of the portable document format (PDF) developed specifically for archiving electronic documents. It differs from PDF by omitting features that are unsuitable for long-term archiving, such as font linking (as opposed to font embedding). It identifies a ‘profile’ for electronic documents to ensure that they can be reproduced in exactly the same way over years to come. Key to this reproducibility is the requirement for PDF/A documents to be 100 per cent self-contained. All the information necessary for displaying the document in the same manner every time is embedded in the file.

The business case for data interchange standards is quite clear, as companies focus on: productivity (cost reduction); outsourcing or externalisation; and innovation:

- Improved productivity is increasingly dependent on automation and the elimination of inefficient steps and manipulations in data handling. Standards for data interchange would simplify instrument interfaces, cut interfacing costs, reduce errors, and simplify validation;
- Outsourcing, or externalisation, involves communicating and sharing data across wide geographic areas and disparate technologies. Standards for data interchange can facilitate these communications by removing the dependence of the data on the application that created them. In other words, the data can be stored, viewed, and manipulated in applications other than the one in which it was created; and
- Innovation arises from correlating, mining, visualising, and making sense of data from multiple sources. Again, these processes can be easier and faster, if data can be stored and accessed in standard formats.

A few standards for interchanging laboratory data do exist, but they have not been adopted on an industry-wide scale.

If the business case is so strong, why is it taking so long to make any progress? From a technology perspective, there has never been a better time to exploit the potential of standards: the development of a global infrastructure in the form of the internet has provided a platform that other consumer and business domains are taking full advantage of, as the example of photo sharing illustrates. However, digitising the laboratory has been a slow journey,

www.scientific-computing.com/lig2014
stretched over four decades. As laboratories become progressively ‘paperless’, progress towards a fully integrated environment will depend on overcoming the limitations posed by the current lack of data standards.

Organisations such as the Pistoia Alliance, the Allotrope Foundation, and the Consortium for Standardisation in Lab Automation (SiLA) have recognised and taken action to address the issue from the standpoint of ‘industry associations’.

As Peter Boogaard explains in the previous article, the Allotrope Foundation (www.allotrope.org) is an international association of biotech and pharmaceutical companies that are collaborating to build a common laboratory information framework for an interoperable means of generating, storing, retrieving, transmitting, analysing, and archiving laboratory data, as well as higher-level business objects such as study reports and files of regulatory submissions. In a recent press release, Allotrope Foundation announced its partnership with Osthus to build the framework, which will have three interacting components:

1. Open document standards based on XML, JSON or other formats that support structured data;
2. Open metadata repositories containing dictionaries to provide accurate metadata input into laboratory systems;
3. Open-source class libraries that will produce and consume content from the first and second components;

The Pistoia Alliance (www.pistoiaalliance.org) is a global, non-profit, precompetitive alliance of life science companies, vendors, publishers, and academic groups that is aiming to lower barriers to innovation by improving the interoperability of R&D business processes. The Pistoia Alliance is trying to identify the root causes of inefficiencies in R&D and to develop best practices and pilot technology. Pistoia is not a standards group, but the membership recognises that their organisations are tackling common precompetitive problems – aggregating, accessing, and sharing data that is essential to innovation, but provides little competitive advantage. The ELN project (ELN Query Standard) initiated by the Pistoia Alliance has ground to a halt, but could be revisited if there were sufficient interest amongst members. However, there is good progress with the release of the HELM (Hierarchical Editing Language for Macromolecules), a standard open source
tools for biomolecular representation.

The consortium for Standardization in Lab Automation (SiLA, www.sila-standard.org) is developing and introducing new interface and data management standards to allow the rapid integration of lab automation systems. SiLA is a not-for-profit membership corporation with a global footprint and is open to institutions, corporations, and individuals active in the life science lab automation industry. Leading system manufacturers, software suppliers, system integrators and Pharma/Biotech corporations have joined the SiLA consortium and participate in and contribute to different technical work groups.

The long history of incremental adoption of laboratory technologies has left a legacy of proprietary approaches to interfacing laboratory and business systems

In addition to the strategic activity of these industry associations, the most prominent initiative in developing a data interchange standard is AnIML (anlml.sourceforge.net). AnIML is a standardised XML data format that can be used for storing and sharing experiment data. It is suitable for a wide range of scientific disciplines. Its origins are in the analytical chemistry, but the scope has been extended to include biological data.

AnIML documents can capture laboratory workflows and results, irrespective of the instrument or measurement technique used. To achieve this, AnIML provides a generic data-container that permits the storage of sample information, method information, measurement results, instruments and software used, as well as workflow information that ties experiments and samples together. AnIML is being developed by the ASTM E13.15 subcommittee on analytical data, which consists of volunteers from industrial, academic, government, and vendor communities.

It is far too soon to estimate what the industry associations will achieve, and there is a risk that the industry may end up with a multitude of standards. The diversity of laboratory types, the wide range of different data generators spanning different technologies and vendor communities, and the range of informatics’ tools all conspire to add enormous complexity to the challenge. Furthermore there is the need to agree not only the technical format of a data standard, but also the ontologies and vocabularies for relevant laboratory data elements. It is not unusual to find misunderstandings of data definitions within a single company, let alone across an industry!

Where will the laboratory informatics community stand if and when data interchange standards emerge? Firstly, laboratory integration would become easier, cheaper, and more effective. However, the long history of incremental adoption of laboratory technologies has left a legacy of proprietary approaches to interfacing laboratory and business systems. A data standard would be dependent on industry-wide agreement, approval by various regulatory bodies and other interested parties, and the willingness of the vendor community to cooperate. As strong as the business case may be, the task is therefore far from straightforward and has no guarantee of success.

However, there may be another approach, which will not be driven by the informatics community itself, but which may develop through the adoption of emerging technologies. The development of an ‘internet of things’ – where every ‘thing’ is uniquely identified and seamlessly connected into the information network – will depend on the adoption of data and communication standards to facilitate data capture, connectivity, and interoperability.

So, if every piece of laboratory equipment that generates data can have its own IP address and can be linked seamlessly into the networks, a truly integrated business ecosystem that incorporates laboratory data and information management becomes possible.

The relentless evolution of new technologies offers the hope that if all else fails, then the trends in integration, sharing and collaboration in the consumer world may provide the basis and incentive to address requirements in the laboratory.

John Trigg is director of phaseFour Informatics.
Is collaboration taking you straight to innovation?

It can be hard to see if the way you collaborate is running parallel with your goals. If it is, success is assured. If not, you won’t get the results you demand.

That’s why IDBS E-WorkBook Suite gives you the clearest picture of where you’re going, with unique solutions to keep your collaborations on track.

Talk to us, and let us open your eyes.
INFORMATICS IN ACTION

From contact testing laboratories to multinational companies, informatics systems have an important role to play. Sophia Ktori spoke to some of the users

David Hawkins, CEO at Butterworth Laboratories

Butterworth Laboratories is a fully independent UK provider of contract analytical services. It offers method development, method validation, stability testing, and QC testing services to the pharmaceutical, medical device and chemical industries, including analysis of raw materials, active ingredients, and finished products. The laboratory is ISO 17025 (2005)-accredited, and GLP/GMP compliant, with specialisation in chromatography, wet and general chemistry, metals analysis, physicochemical testing, and elemental microanalyses.

Butterworth installed Autoscribe’s Matrix Gemini LIMS platform in 2007, following a review of its existing information management system, which was largely paper-based and inefficient, explains David Hawkins, chief operating officer and head of quality assurance and IT. ‘We realised back in 2006 that we needed a LIMS platform that would operate as a process management system. Required functions included overseeing the input, storage, retrieval, management and sharing of data, including client requests and quotes, along with sample receipt and tracking, the allocation of test specifications and requirements to our team of analysts, the management of laboratory and analytical data, results reporting to clients, and invoicing. Information from each stage needs to be visible to people in multiple departments, but we didn’t have the infrastructure to make that possible electronically, and in standard formats.’

Prior to implementing the Matrix Gemini LIMS, this information-flow largely involved passing sheets of paper with the relevant information from desk to desk between and within departments. ‘We even employed
an individual to ferry documentation from one department to another. Data entry was manual and labour-intensive, and, from a quality point of view, relatively high risk with the potential for errors, or information loss, which was far from ideal in a GMP- and GLP-compliant environment.

Butterworth had very specific requirements for its LIMS, in that the system would have to demonstrate significant flexibility due to complex technical specifications. ‘We tend to do the kinds of testing that our clients can’t, or don’t want to do in-house, which means each request is highly specific in terms of the type and breadth of analyses, as well as the sample type,’ Hawkins points out. ‘We don’t have a standard series of preconfigured analyses, such as those that would typically be run on finished pharmaceutical products, for example, or on wastewater or clean water samples for the utilities industry. We also send each client raw analytical data along with the certificate of analysis, so we needed the LIMS to interface with the electronic documentation system that we use to scan in and store each printout of raw results.’

The degree of flexibility and the ability to configure all aspects of the Autoscribe system has allowed Butterworth to use the LIMS as its default system for functions including data mining, generating management reports, and reagent inventory. ‘From a management perspective, we can even use the system to monitor and track the usage of each type of instrumentation and hardware, and calculate, for example, how much a particular technique has earned in a given time period,’ Hawkins adds. ‘Ultimately, the system has vastly improved efficiency, reduced the potential for errors, and provided business management and administrative benefits over and above its LIMS capabilities.’

Lloyd Colegrove, director of fundamental problem solving, statistics and modelling, Dow Chemical Company

Dow Chemical Company manufactures 5,000 products at 188 sites in 36 countries, and operates globally through six business segments; electronic and functional materials, coatings and infrastructure solutions, agricultural sciences, performance materials, performance plastics, and feedstocks and energy.

Within its manufacturing operations, the firm applies LIMS at a fairly basic level, to collect analytical data, carry out some basic data analytics inherent in the system, and communicate with the product-release process to confirm that the product meets specifications and allow product release, explains Lloyd Colegrove, director of fundamental problem solving, statistics and modelling. ‘The Thermo Scientific SampleManager LIMS receives and stores data from our chromatography data systems (CDS) and other instrumentation, and from there the data is used for laboratory management and quality systems functions. However, we really don’t use the platform to its full capability. It has many capabilities that we just haven’t tapped into. As one production manager once pointed out to me, we’ve got a 747 that we use as a crop duster.’

There are a variety of issues that have held back implementation of the LIMS platform to its full potential working. This will be especially relevant as Dow moves beyond running SAP R/3 to the next level, NEA, with which LIMS will also have to communicate.

Training LIMS users is another issue that holds back any incentive to use the LIMS to its full potential, he continues. ‘You have to ensure that expertise gained by one person who uses the system is passed on when new people are brought in.’ To this end, individuals within Dow’s larger sites are appointed and trained as experts in particular aspects of LIMS implementation, so they can support other users and pass on that knowledge. ‘We have also reached out to Thermo Fisher to provide a training curriculum that we can implement.’

Dow’s relationship with Thermo Fisher spans some 20 years, but the company probably hasn’t tapped into the expertise of its LIMS provider as far as it should or could have, which is not all that unusual. ‘I don’t necessarily want LIMS to do any more than it does already for us, even though I appreciate that we don’t exploit its capabilities fully. However, what I do want is for LIMS to be an easier solution to install and operate within the corporate system. We need to show Thermo Fisher exactly what we need and provide them with an understanding of how we use the platform, so they can build us a system that is suited to our particular workflows and processes, and show us how to make its implementation, customisation, and ongoing improvement less complex and more efficient.’
Latis Scientific is a UK contract testing laboratory and consultancy firm, accredited to ISO/IEC 17025:2005, that offers microbiology and chemical testing services to the water, food, recreational, and building-services industries. Three years ago the company installed an AIS LIMS to replace separate legacy systems in place at GR Micro and Oakland Calvert Consultants, the major parts of which were consolidated into the Latis Scientific organisation.

Latis offers a range of analytical suites that comply with legislative requirements, or can be designed to meet specific client requests. Operating two laboratories in the UK and 10 sample reception sites, the firm often has to transport multiple samples collected from reception sites to the different laboratories, so its informatics challenges start as soon as the sample is received at one of the laboratories. ‘We needed a system that could track and audit every sample from its arrival at the relevant testing laboratory, to logging of the sample on the analytical instrumentation, results generation, and data reporting,’ explains Michelle Idiens, the firm’s IT manager. ‘In many cases duplicate samples from the same origin will be transported to one of our facilities, but one sample will then be dispatched to our second facility for an alternate suite of tests. Using the AIS LIMS we can track every sample, while it is in transit, and know when it is live at a particular laboratory. AIS LIMS also provide a Labportal system that allows clients to go online and register their own samples at any time of day or location. This is then sent to the LIM system so that when the physical samples arrive they can be quickly processed. The tool also allows our clients 24/7 access to their results on screen, as a pdf or as an excel file.’

Working with the relatively small team at AIS LIMS enabled the platform to be tailored exactly to the requirements at Latis

The legacy systems at GR Micro and Oakland Calvert were outdated, incompatible, and each had a number of drawbacks, Idiens points out. ‘As well as allowing for complete sample tracking, management and custody chain, the AIS LIMS platform is interfaced with the laboratory instrumentation, and has increased automation of both chemistry and microbiology testing through barcode scanning of microbiology microplates, and direct scanning of samples onto analytical instrumentation for chemical testing. This automation has reduced hands-on time, repetition of data input and potential sources of error associated with that data entry.’

Results reporting to the client was still very much a manual process using the old LIMS. Someone would have to generate a PDF after the laboratories had manually inputted all the results, and then e-mail the report to the client. Invoicing was another task that could take up to an hour in one system per client. ‘As well as providing a complete audit trail for each sample and set of results, the interface with our laboratory instrumentation means that the AIS LIMS generates and sends reports automatically to the client by email, in the correct format, and a flexible invoicing capability has dramatically reduced the time required for this operation.’

Working with the relatively small team at AIS LIMS enabled the platform to be tailored exactly to the requirements at Latis. ‘It’s a COTS (commercial-off-the-shelf) software that has been configured for the marketplace rather than by the industry, and the AIS LIMS team has listened to our requirements and built-in the features that we required. The system we now have in place has provided us with full sample tracking and auditing capabilities, as well as an interface with laboratory instrumentation, and this has allowed a major reduction in the need for manual data entry.’
Advanced Laboratory Testing Ltd (ALT) is a fully Irish-owned contract testing laboratory established in February 2013 to provide microbiology and chemistry testing services to the food industry in Ireland. The laboratory complies with ISO/IEC 17025:2005 for all analyses, offering customised solutions for testing raw and cooked foods, and water samples.

ALT carries out microbiology testing of cooked and raw food, and water samples in three separate laboratories at its site in Newbridge, Co. Kildare. Food chemistry testing is outsourced to the firm’s partners, so an installed LIMS also has to be able to track outsourced samples, and manage data coming back into the system from outside sources.

During 2013, ALT installed LabWare’s Enterprise Laboratory Platform LIMS, underpinned by the LabWare Contract Template Solution, which is ideally suited to the requirements of the Irish firm, explains Tom Tobin, who heads ALT’s LIMS administration. ‘We looked at the flow of samples through the lab, right from the point of sample receipt and entry into the system, through to reporting and invoicing, to see what our requirements were at every stage’. From our perspective, a LIMS had to be capable of allowing the processing of high volumes of samples, with the stringency to enable the highest levels of quality management,’ comments Graham O’Halloran, ALT’s technical manager.

One of the primary requirements of the contract food-testing sector is speed of turnaround and reporting to clients, Tobin continues. ‘LabWare’s Contract Template Solution has been designed around the needs of the contract-testing sector, and could be configured to our specific requirements, which are primarily centred on the need to manage sample volumes, enable sample throughput, and host a regulatory compliant, fully transparent audit trail. We were able to strip down the number of steps it took to book samples in to our laboratory, barcode them and assign each sample to the relevant laboratory, with a specific suite of tests, so that delays at each stage were minimised,’ adds Graham O’Halloran.

ALT also uses the LabWare LIMS to carry out results calculations, which are checked against specifications and highlighted and reported if a specification limit is exceeded. LIMS then produces the certificate of analysis, which is reviewed and approved before being sent out by the LIMS to the customer.

ALT is currently expanding to provide further on site testing for the environmental, food, and potentially pharmaceutical sectors.
LIMS Nightmare #146

“How long does it take? I’ve had 15 people working 5 days a week for two years and my LIMS still isn’t fully deployed.”

End the Nightmare. Rest easy with the New Accelrys Process Management & Compliance Suite.

ELN, LES, LIMS, EBR, Discoverant ...

It’s more than LIMS. accelrys.com/scw
Abbott has announced version 11 of the its Starlims software-based laboratory information management system (LIMS).

It expands user functionality to include mobile device applications, advanced analytics, and HTML5 compatibility, enabling users to access LIMS information on any screen.

The software offers users advanced analytics capabilities with out-of-the-box dashboards that enable labs to optimise workflow and identify bottlenecks, viewing data with visualisations that are provided by advanced analytics.

Advanced analytics features include: forms that can be created by users to run system-wide on Chrome, Safari and other browsers for tablets and smartphones; two new control libraries, one for tablets and smartphones; two new control libraries, one for tablets and smartphones; two new control libraries, one for tablets and smartphones.

This version of ELN v2.2 includes new features with a collaborative and intuitive user interface enabling scientists to work with the ELN to support, complement or even replace the labs paper notebooks.

The upgrade includes improvements and new capabilities including improvement of the user interface with a more fluid usage, a new content editor and grid custom field’s improvements for PDF and printing exports; with a tree-view summary.

AgileBio is a provider of IT solutions specialising in web-based software for life sciences has announced the release of a new version of its electronic lab notebook (ELN), a complementary application to its LIMS, LabCollector. ELN is an efficient and simple notebook to store, organise, find and share all researchers’ laboratory experiments in a variety of life sciences and other industries as well as in academic research laboratories.

This version of ELN v2.2 includes new features with a collaborative and intuitive user interface enabling scientists to work with the ELN to support, complement or even replace the labs paper notebooks.

Amphora provides PatentSafe, a quick straightforward and cost-effective solution to the tricky problem of laboratory notebooks in today’s environment. Amphora believes that the best approach for users is to ‘get out of the way’. It eschews ill thought-out features and complex choices, instead allowing the users to be able to focus on science.

PatentSafe is particularly suited to modern approaches to research record keeping. Along with the increasing ‘externalisation’ of research activity, with collaboration across organisational boundaries, the America Invents Act brings new concerns. The focus is no longer solely on experimental write-ups, now scientists need to ensure they can account for the knowledge that is transferred to other parties and when. This takes the burdens of ‘lab notebook’ style record keeping into the project meeting and day-to-day collaboration.

BioXM Knowledge Management Environment is a fully customisable knowledge management environment that manages complex data and transforms it into useful information.

The system is designed to be configured easily; this makes it useful in several different areas. It is designed with a solution-building approach: rolling out a new application to end-users takes only weeks. The system is continuously adapted while staying in production, which is aimed at reducing costs.

BioXM technology enables expanding knowledge and integrating data from any source, refining decision making, connecting the dots explaining systems, and creating new hypotheses to visualise relationships between data networks.

Bruker Dash Reporting is a new system which brings customised reporting to all users of the EVOQ liquid chromatography mass spectrometer (LC-MS) and the SCION gas chromatography mass spectrometer (GC-MS). This new capability centres on Dash Designer, a purpose-built application that enables customers to position and closely format report elements and preview reports with relevant data.

Bruker’s Pacer software is
designed to match the hardware advances in the EVOQ liquid chromatography mass spectrometry (LC-MS) range. Pacer provides exception based data review to significantly reduce the error rate for quantitative analysis, by enabling chromatograms to be reviewed by exception.

www.bruker.com

BSSN Software has released Seahorse Scientific Workbench, a vendor-independent software suite for capturing, analysing and sharing analytical data. It consolidates raw and result data from multiple experimental techniques in a single tool, based on the emerging ASTM AniML data standard.

Seahorse Scientific Workbench captures each step of a workflow and presents it in its entirety. An intuitive navigation model allows scientists to explore experiments and samples, independent of the original vendor software. Visualisation, annotation and reporting features provide the necessary support.

www.bssn-software.com

Certara’s D360 is used for the query, analysis, and visualisation of drug discovery and development data. It can be used to analyse, and visualise existing data and entire workflows can be saved as a ‘widget’ to be shared or reused.

Phoenix WinNonlin is a pharmacokinetic/pharmacodynamic (PK/PD) modelling and non-compartmental analysis (NCA) software. The tools allow researchers to visualise and analyse their data which is stored in a single file. Key features include a library of PK/PD models, reusable workflow templates and bioequivalence determination.

Phoenix NLME is a data processing, modelling, and reporting product for population PK/PD analysis. Tools are provided for creating preliminary plots, determining a base model, covariate analysis, developing a final model and its evaluation.

www.certara.com

ChemAxon has launched JChem for Office, which provides chemistry functionality for MS Office users. Building out from the JChem for Excel product, the product provides productivity features including, embedding live chemical structures from existing files, supporting all major common chemistry file types and copy and paste functionality. The software can also be used to sketch and edit structures on the fly, directly in the original document and import structures and their associated data directly from remote corporate databases, or from other ChemAxon products like Instant JChem.

http://bit.ly/1BNak3S

Core Informatics provides LIMS, ELN and SDMS to customers across R&D industries including life science, food and beverage, clean technology, molecular diagnostics (MDx), genomics, energy, chemical, petrochemical and environmental. Core informatics products are configurable to match customers exact laboratory workflows and automation needs without programming.

Core LIMS includes inventory management, automated data capture and reduction, dashboards and reporting, workflow management and more. Core ELN helps labs capture, analyse, manage and share data to simplify the transition to a ‘paperless’ system. Core SDMS accelerates scientific decision-making by simplifying the capture and archive of vital instrument results files.

www.CoreInformatics.com

CSols Laboratory Informatics Software and Services solutions include links for LIMS, instrument interfacing and integration software. AqCTools for QC statistical analysis and charting of AQC and IQC samples for improved monitoring, exceptions management and reporting of AQC results, ensuring that analytical methods and instruments are performing optimally and within regulatory requirements.

They also offer the Remote Sampler mobile application to assist sampling and data capture in remote locations, designed to help to eliminate transcription and data entry errors and guide samplers in all routine activities. Optionally included are sat-nav software for route guidance and GPS coordinate recording for full chain of custody trails.

www.csols.com/home.asp

Dataworks Development has announced the release of a major new upgrade, version 6.0, to its Freezerworks Unlimited freezer inventory and sample management software program.

Freezerworks software is designed for user configuration; this has been implemented with expanded configurability in version 6.0. Most notable are improvements and greater capabilities in screen design and layout, as well as in adapting the shipping processes to the workflow of the biobank.

www.freezerworks.com

IDBS provides E-WorkBook Suite, a single platform proven to increase operational efficiency through flexible management of research and IP. It enables scientists and researchers to more effectively create and work in communities supported by trusted data.

E-WorkBook platform includes data management and workflow management. It improves data quality and compliance by enforcing business rules and reducing transcription errors. This enables the user to move beyond unstructured data capture and IP protection towards real-time data-centric collaboration.

E-WorkBook is available both via the web and as a desktop client to enable researchers to access, manage and share their data from the lab, at their desk or on the go. The platform provides a secure, searchable repository of corporate knowledge.

www.idbs.com

KineMatik has launched version 10 of its Electronic Lab Notebook, which now includes full mobile and tablet device support. Intellectual property is protected with full audit trails and 21 CFR 11 compliance.

Dotmatics has a new Dotmatics Platform, which includes Studies Notebook and Browser.

Studies Notebook is a web-based electronic laboratory notebook that covers all scientific disciplines in a single set of tools, including chemistry and biology. In this latest release, Studies Notebook incorporates configurations for formulations and analytical/ad-hoc biological studies.

Studies Notebook is designed to enhance information sharing and improve productivity in pharma, biotech and chemical companies, as well as academic institutions and research centres. Browser, the powerful and scalable query and reporting tool, allows users to search all fields within the Notebook. Through Browser, users can federate and search data from multiple sources, independent of the original database.

This release offers enhanced security features for using the system on your intranet, or on our cloud infrastructure.

www.dotmatics.com
The KineMatik ELN offers one-click publishing to automate the entire process of publishing, approving, and witnessing the experiment, as well as archiving the experiment for use in future research.

LabAnswer has produced multi-site systems that perform tasks such as assessments, vendor/product selection, architecture/design, configuration, system/instrument integration, validation, training, data load/migration, organisational change management, deployment, and support outsourcing. They deploy integrated systems comprising of ERP, ELN/LES, LIMS, SDMS, and CDS functionality. Aiming to provide strategic and technical information from which informed investment decisions can be made. LabAnswer’s experience with enterprise informatics solutions ensures the development of a scientific data management system that optimises application portfolios while maximising value, increasing compliance, and achieving business objectives.

LabLite LLC is a LIMS software company offering multiple products including LabLite SQL LIMS, LabLite Process Control, LabLite CS, LabLite Stability and LabLite CMT. LabLite CS is used to track customer calls and complaints from receipt to resolution. LabLite Stability which is aimed at labs conducting rapid age testing and stability studies, features include inventory to track consumables, expiration dates and usage history, handhelds and tablets to collect field readings then auto-upload to LIMS. LabLite CMT to track your calibration, maintenance and training schedules. All of these products can be used alone or fully integrated depending upon customer’s needs.

LabWare’s ELN provides a familiar spreadsheet style environment, providing the capability to mix spreadsheet and document style templates. The system can operate in experiment driven, research environments and also provides a method execution mode suitable for QA/QC. The software provides instrument integration, flexible management of images and raw data files and comprehensive operation auditing.

LabWare ELN can be integrated with LabWare LIMS, delivering a cost effective, advanced level of laboratory automation capability with access to an extensive range of application modules and integrated instrument data acquisition technology.

Modul-Bio provides MBioLIMS BioBanking, a flexible LIMS dedicated to biobanks and cohorts studies, which has been deployed successfully at more than 100 sites. This 100 per cent web-based software provides perfect traceability of biospecimens, from reception to shipment. Its main functionalities include patient management, sample collection, processing, analysis, storage and distribution. MBioLIMS is compatible with MBioLABEL, a biological sample identification solution for long-term storage, which includes labels, barcode printers and scanners; and with eMBioBANK, a centralised bio-specimen inventory web portal for sharing bio-repositories’ sample collections with researchers.

NoteBookMaker is a legal notebook system for laboratory professionals but can also be used by anyone recording proprietary data, (easy to use data management). The solution was produced with FileMaker Developer database software; it is also 21 CFR part 11-compliant, a key feature for legal defence.

BioRails enables research scientists to capture experimental data and methodologies together in a single system, enabling them to quickly analyse assay results and refine study designs.

A key component of BioRails DM is Morphit, a spreadsheet technology for data analysis and reporting. It includes support for curve fitting, non-compartmental modelling for PK and statistical tests for in-vivo pharmacology.

Qlucore’s first product, Qlucore Gene Expression Explorer 1.0, is a software engine that visualises data in 3D and aids the user in identifying hidden structures and patterns. Major efforts have been made to develop a core software engine that is extremely fast, allowing the user to interactively and in real time instantly explore and analyse high-dimensional data sets with the use of a normal PC. The latest version, Qlucore Omics Explorer 2.0, represents a major step forward with the added support for hierarchical clustering, scatter plots and powerful log function.

One of the early key methods used to visualise data is dynamic resolution. LabLite Stability which is a LIMS software provides perfect traceability of biospecimens, from reception to shipment. Its main functionalities include patient management, sample collection, processing, analysis, storage and distribution. MBioLIMS is compatible with MBioLABEL, a biological sample identification solution for long-term storage, which includes labels, barcode printers and scanners; and with eMBioBANK, a centralised bio-specimen inventory web portal for sharing bio-repositories’ sample collections with researchers.

NoteBookMaker is a legal notebook system for laboratory professionals but can also be used by anyone recording proprietary data, (easy to use data management). The solution was produced with FileMaker Developer database software; it is also 21 CFR part 11-compliant, a key feature for legal defence.

The software can be used on a PC, notebook or any Mac IOS product to create, search, and print data, which can be imaged to pdf, or to paper for patent submission. The attachment field can embed virtually any file, including sophisticated scans, tables, sound, and movies. A page will also contain a body text field for scientific data; in addition to this NoteBookMaker can be setup in single-user or multi-user (peer to peer, or client/server).

The Edge software consultancy provides BioRails, an application suite designed for biologists and project teams. BioRails PTO is an assay request and tracking system used to enable project teams to track and optimise progress of small molecules and biotherapeutics drugs.

BioRails PTO enables scientists to plan, and schedule their work, improve turnaround times and remove bottlenecks.

BioRails Data Management (DM) is a solution for capturing, processing, analysing and reporting in vitro and in vivo biological data and workflows.

Qlucore’s first product, Qlucore Gene Expression Explorer 1.0, is a software engine that visualises data in 3D and aids the user in identifying hidden structures and patterns. Major efforts have been made to develop a core software engine that is extremely fast, allowing the user to interactively and in real time instantly explore and analyse high-dimensional data sets with the use of a normal PC. The latest version, Qlucore Omics Explorer 2.0, represents a major step forward with the added support for hierarchical clustering, scatter plots and powerful log function.

One of the early key methods used to visualise data is dynamic resolution. LabLite Stability which is a LIMS software provides perfect traceability of biospecimens, from reception to shipment. Its main functionalities include patient management, sample collection, processing, analysis, storage and distribution. MBioLIMS is compatible with MBioLABEL, a biological sample identification solution for long-term storage, which includes labels, barcode printers and scanners; and with eMBioBANK, a centralised bio-specimen inventory web portal for sharing bio-repositories’ sample collections with researchers.

NoteBookMaker is a legal notebook system for laboratory professionals but can also be used by anyone recording proprietary data, (easy to use data management). The solution was produced with FileMaker Developer database software; it is also 21 CFR part 11-compliant, a key feature for legal defence.

The software can be used on a PC, notebook or any Mac IOS product to create, search, and print data, which can be imaged to pdf, or to paper for patent submission. The attachment field can embed virtually any file, including sophisticated scans, tables, sound, and movies. A page will also contain a body text field for scientific data; in addition to this NoteBookMaker can be setup in single-user or multi-user (peer to peer, or client/server).

Qlucore’s first product, Qlucore Gene Expression Explorer 1.0, is a software engine that visualises data in 3D and aids the user in identifying hidden structures and patterns. Major efforts have been made to develop a core software engine that is extremely fast, allowing the user to interactively and in real time instantly explore and analyse high-dimensional data sets with the use of a normal PC. The latest version, Qlucore Omics Explorer 2.0, represents a major step forward with the added support for hierarchical clustering, scatter plots and powerful log function.

One of the early key methods used to visualise data is dynamic resolution. LabLite Stability which is a LIMS software provides perfect traceability of biospecimens, from reception to shipment. Its main functionalities include patient management, sample collection, processing, analysis, storage and distribution. MBioLIMS is compatible with MBioLABEL, a biological sample identification solution for long-term storage, which includes labels, barcode printers and scanners; and with eMBioBANK, a centralised bio-specimen inventory web portal for sharing bio-repositories’ sample collections with researchers.

NoteBookMaker is a legal notebook system for laboratory professionals but can also be used by anyone recording proprietary data, (easy to use data management). The solution was produced with FileMaker Developer database software; it is also 21 CFR part 11-compliant, a key feature for legal defence.

The software can be used on a PC, notebook or any Mac IOS product to create, search, and print data, which can be imaged to pdf, or to paper for patent submission. The attachment field can embed virtually any file, including sophisticated scans, tables, sound, and movies. A page will also contain a body text field for scientific data; in addition to this NoteBookMaker can be setup in single-user or multi-user (peer to peer, or client/server).
Biology software that works

Flexibility without compromise

- DMPK, Pharmacology, ADME, Toxicology, *in vivo*, *in vitro*...
- Workflow, productivity, collaboration and knowledge management
- Modern solutions: desktop, intranet, cloud

The Edge Software Consultancy Ltd.
http://www.edge-ka.com info@edge-ka.com + 44 (0) 2380 411098 Guildford, United Kingdom

Paperless Lab Academy

Learn how to implement self-documenting processes
Discover the enormous potential of paperless data management

- Over 20 presentations and live demonstrations
- Post congress training courses
- Networking reception

13-14 May 2014
Amsterdam,
The Netherlands

Free register at
www.paperlesslabacademy.com

academy@industriallabautomation.com Paperlesslab Academy

Rules apply
> principal component analysis (PCA). Dynamic PCA is PCA analysis combined with instant user response, a combination that provides an optimal way for users to visualise and analyse a large dataset by presenting a comprehensive view of the data set at the same time. www.glucore.com

Ruro is headquartered in Maryland’s biotechnology corridor. RURO develops computer software for research, biotechnological, pharmaceutical, healthcare and government laboratories in the US and worldwide. RURO is a web applications developer, combining world-class innovation and industry experience so individuals can use computer software in new ways and places. RURO has a fervent focus on the relevant and innovative software technologies that address its customers’ needs, RURO strives to be the best at integrating world-class technologies into all its products. They aim to generate novel ideas and communicate with the prospective users of our products to create truly the best innovative applications which have no analogues on the current software market. www.ruro.com

Siemens Electronic Lab Notebook (ELN) allows researchers to capture experiment data of any type in electronic format, it is also fully integrated with the lab, being built on top of the Siemens LIMS. The software now offers a mobile platform that deploys all the assets of modern tablets in a simple user interface and a central data repository, allowing the search and re-use of knowledge from previous experiments. Full audit trail and access control for this data is available, facilitating intellectual property management www.siemens.be

QESTLab is Spectra QEST’s LIMS, specifically designed for the construction materials testing (CMT) industry. It is designed to improve efficiency and introduce best practice in all areas of the laboratory. The system can support centralised implementations and is a functionally broad system after more than a decade of continuous improvement and adaptation in a variety of markets.

QESTLab’s reach can be extended to the field with the adoption of the QESTField system which is designed to run on portable, hand-held devices. Further, the QESTLab system integrates well with Construction Hive, which is a web system for the management of CMT results. www.spectraqest.com

Studylog Systems provides Studylog Animal Study Workflow Suite, which aims to automate animal study work-flow, from collaborative study design, data acquisition, task scheduling & oversight, data analysis, graphing, reporting and data sharing. All results and methods are digitised, stored securely and accessible wherever and when you need them. www.studylog.com

Titian Software’s Mosaic is a sample management software suite, providing management of compounds, biological collections, reagents and standards. Designed to streamline sample inventory, tracking and ordering, in high-throughput biotech and pharma laboratories, Mosaic provides a solution to sample management traceability and sample supply chain. As a modular software platform, Mosaic is scalable and provides flexibility to support the sample supply workflows for all sizes of life science organisations in industry and academia. The latest version of the software, Mosaic 5.0, also permits extensive integration capability with a range of automated stores and dispensing systems for maximum productivity and complete workflow management. www.titian.co.uk

The Trilogy Group provides TAPS (sample planning and scheduling), which enables companies and consultants with environmental or sample collection field teams, to plan collections, create optimised sampler rounds, print bottle labels, estimate workload and cost, conduct monitoring and on-site

Thermo Scientific has launched SampleManager 11, a configurable version of its laboratory information management system (LIMS). It features tools and workflow capabilities that simplify implementation, allowing lab managers to model their processes in the LIMS. The LIMS workflow can automate the logical decisions, improving throughput by saving time and simplifying user interactions. SampleManager 11 puts power in the hands of users who can make logical choices about workflow, instrument integration and data reporting for management metrics or regulatory requirements. www.thermoscientific.com

The TIBCO Spotfire Analytics platform allows users to uncover insights hidden in data through intuitive visualisations, analytic dashboards, and applications. It is used to reduce reliance on IT and eliminate time related to data preparation, report building, and spreadsheet version control.

ENotebook 2014 is the latest version of TIBCO’s electronic laboratory notebook. It is used for capturing, recording and analysing scientific data, the notebook is also integrated with Datalytix query tool used for seamless data visualisations. Improved features include: inventory and registration integration, BioAssay including a library of standard protocols and the upgrade toolkit.

Ensemble is a solution for the management of data and the integration of workflows; it features a number of tools including inventory, registration, ChemBioDraw a chemical drawing tool and iLAB, an LES designed specifically for QA/QC. www.tibco.co.uk

UNIConnect supply laboratory process management software solutions for bi-molecular labs (MDx, CDx, OncoMDx, Crop Science, Aquaculture and Livestock). UNIConnect delivers software and professional services for the dynamic requirements of those driving the science and business of precision medicine and agriculture. Aiming to provide configuration flexibility, precise tracking and process detail that is comprehensive from first sample to final report. www.uniconnect.com
Laboratory Information Bliss™

Through modern solutions, RURO’s partners are prepared for adversity and have the tools needed to remain competitive in the scientific industries of today. Rely on one of the fastest growing providers of information management solutions that has helped more than a thousand labs worldwide.

Contact us at:
888-881-RURO (7876)
301-639-5546
sales@ruro.com

RURO, FreezerPro, LIMS24/7, Lfinity are registered trademarks of RURO Inc.

Compliance:
FDA 21 CFR Parts 11, 21, 58, 210, 211, 820
cGLP/cGMP (Good Laboratory Practice and Good Manufacturing Practice)
Section 508 Accessibility Guidelines
HIPAA Accountability Act of 1996
HIPAA Patient Safety and Quality Improvement Act of 2005 (Patient Safety Act)

Compatibility:
☑ PC/MAC
☐ Tablet
☐ Smartphone
☐ Web-based
One of the biggest trends in informatics is the move to integrate mobile technology into the laboratory. The topic will feature repeatedly in presentations and round-table discussions at the Smartlab Exchange meeting in Munich in February 2014.

Similarly, many laboratories are switching to use software as a service (SaaS). The first reason is to restrict spending on data-centres and IT infrastructure especially for smaller companies that cannot afford to have large installations for data analysis. SaaS provides the opportunity to pay for these services when they become necessary, and removes the need to house data centres with large maintenance and power costs.

The second reason for the adoption of an SaaS model is so it can be used as a safe but temporary collaboration infrastructure – several companies can share a zone external to their firewall where collaboration can take place but without risking their intellectual property. This service can then be switched off once the collaboration is over, meaning that the companies do not incur extra costs or have to share parts of their own internal data-centres with competitors.

MOBILE TECHNOLOGY STRATEGY
Mobile technology presents its own technical challenges. Either discrete applications have to be created to take advantage of mobile devices, or the existing system has to be modified, for example, to enable the use of touch-screen devices. Informatics companies have adopted different strategies for tackling the integration of mobile devices. Stuart Ward, product manager for IDBS’s ELN product E-WorkBook, said: ‘We see mobile devices as having specific apps for very discrete types of transactions, rather than some sort of universal application like you could deliver on a desktop or a laptop.’

In contrast, Seamus Mac Conaonaigh, director of technology at Thermo Fisher, said: ‘Our approach is really to extend our applications to allow mobile use, rather than to develop single-use mobile applications.’ He went on to explain how the company’s software can enable the use of mobile-devices within the existing LIMS infrastructure. ‘We have a piece of middleware called Integration Manager which allows integration of basically any end-point with our LIMS system’. This enables users to develop functionality, on top of the existing LIMS platform, tailored to their specific needs.

CAMERA TECHNOLOGY
Mobile technologies can capture data better than conventional techniques in certain areas. The most effective and easiest to implement are: QR codes; bar-code scanning; and the use of cameras to photograph specific instances in the lab. Ward explains that very much like traditional ‘apps’, data-capture in the laboratory is most effective for very specific things: ‘Using the camera as a bar-code scanner or a taking a picture of an event. They lend themselves to specific types of data’. Mobile technology is not going to replace all the traditional methods of data capture. ‘You’re not going to have someone on a mobile device typing in 10,000 data-points, it’s just not going to work,’ he continued.

One problem is simply the lack of...
convenient keyboards when using tablet or phone-like devices. Similarly, browsing large amounts of data or conventional spreadsheets are unlikely with the current technology in mobile devices. Scott Weiss, IDBS director of product strategy, explains: 'Just trying to shrink them [big data sets] down to a mobile device and trying to cram all that functionality into a touch-screen – it’s not just a technical challenge, there’s an ergonomics challenge with the way you interact with that.’

Seamus Mac Conaonaigh, from Thermo Fisher, highlighted how bar-code scanners on mobile devices have already been implemented in a loading-dock scenario. ‘Historically, this was done with something like a bar-code reader attached to a workstation, which is not very mobile,’ he continued. With mobile devices, in contrast: ‘You can have the person who’s receiving the goods just basically walking around and scanning all the items no matter where they are, rather than bringing the items to a single location.’ This information is then automatically transferred to the LIMS or similar system. The inherent mobility of hand-held devices means that these types of activities, which used to create a bottleneck in the workflow, can now be carried out more efficiently.

Barcode scanning, combined with the GPS included in many smartphones, can make environmental sampling in the field more efficient. Mac Conaonaigh explained: ‘Previously you would need several pieces of equipment to do this type of thing. Your water-testing person just goes to a location – be it a river or lake – and scans the barcode that’s already attached to the test-tube, fills the test tube, bottles it up, enters the record and then its immediately transferred to the LIMS, so they have the complete chain of custody of where this sample was captured.’ This kind of sampling eliminates transcription errors and makes the validation process easier, as the system automatically records the GPS data.

REVIEWING DATA

Another key area for the integration of mobile technologies is to review the data that has been analysed. John Wise, executive director of the Pistoia Alliance, gave an example of data review out of the laboratory environment where two scientists may discuss how a chemical compound could be modified to aid targeting to a specific area for medicinal purposes. Traditionally this would have been done on paper, but applications can now be used to accomplish this on a mobile device.

Stephen Gallagher, CEO of Dotmatics, said: ‘We have implemented a feature in our chemical drawing app, Elemental, that enables the scientist to draw or annotate a compound or reaction on their phone or mobile device, and automatically push it to their Studies Notebook, Dotmatics’ electronic laboratory notebook.’ Wise went on to say how this type of procedure could be enhanced, ‘by connecting to the corporate chemical database and finding out that maybe you have got that molecule.’ There are other examples of the use of mobile devices to review data captured in the laboratory. Wise said: ‘If you wanted to check the status of an ongoing experiment then perhaps the mobile device would allow you to check.’ He was talking hypothetically – but this technology has already been implemented, according to Thermo Fisher’s Mac Conaonaigh. The company’s Data Manager module can be connected to chemical analysis instruments, for example chromatography. The software collects the data, which can then be viewed using traditional workstation-based computers or a hand-held device. Taking the raw data from the instrument, rather than a jpeg or pdf, means that a higher fidelity is obtained.

Mr Conaonaigh highlights the advantages: ‘On an iPad, you can connect to one of our applications and you can get at the original raw data. So if it’s a chromatograph you can...’
view the overall output and you can zoom in to view all the original peaks.’ He pointed out: ‘Frequently, you can have a situation where there is a very visible artefact at the gross level, which is actually just noise from the instrument, and then when you zoom in you actually see what you wanted to see – which may be in a totally different place. The pdf won’t show that type of thing.’

When implemented for mobile devices as well as traditional workstations, the software does not require the scientist to be in the laboratory. Now this review can be done anywhere as long as the device being used is connected to the internet and thus a web-based client. The device can also be notified when the instrument is finished with the experiment.

THE RISKS OF MOBILE DEVICES
The integration of mobile devices has risks, mainly those associated with the loss of a company’s data, but this has not stopped the adoption of the technology. This is because many of these risks have been associated with similar devices used by company personnel for a number of years. Mac Conaonaigh points out: ‘There is still a risk with mobile devices, but there has been for a long time with laptops anyway.’ He went on to say: ‘You can sandbox anything that’s to do with the enterprise, and if the device is lost or stolen then the IT organisation within the enterprise can remotely wipe that.’

With the ability to remotely wipe sensitive data from mobile devices, the perceived risks can actually work as an advantage. Ward stressed this aspect: ‘If you can have this all operating on a simple device that is relatively cheap, and you put your money into the server that’s actually doing the analysis, you have essentially got the analysis occurring in an environment that you as a business, paying for it, have much more control over.’

BUDGETARY CONTROLS (SAAS)
Some data can be dealt with over mobile devices, but large data sets are becoming more frequent and their analysis presents particular problems, especially for smaller companies. This issue has led to the development of a second technology trend in the informatics field. SaaS is an exciting prospect for many smaller companies as it can provide a high level of computing power for the analysis of large data sets, on a ‘pay as you go’ basis. This removes the financial burden of installing large data-centres. Ward explains: ‘I think the attraction on paper for many organisations to move to a SaaS model is budgetary control, in so much as “I don’t have to think now about setting up the infrastructure, buying servers, maintaining the servers, dealing with upgrades” so there are clearly potential cost-savings from just management of those kind of complex systems.’

Although the main advantage for companies using SaaS may be the management of the IT infrastructure, there are other advantages to using the model, such as being able to access large amounts of computing power at times when the workload for analysis increases. Mac Conaonaigh gives an example: ‘So if you’re in a situation where you have a huge amount of analysis to do, and it is going to take a month or more using your single server that you have sitting in your lab, you can certainly leverage SaaS infrastructure.’ He continued: ‘Just set up 30 instances, instead of your single instance: you get your results much faster and it doesn’t cost you anymore because you’re only running it for a fraction of the time and you only pay for what you use.’

COLLABORATION INFRASTRUCTURE (SAAS)
The case for SaaS is not restricted to just budgetary control, however. Its other advantage is as a collaboration infrastructure. It provides a tool for companies to share information in a safe environment without IP concerns or the classical association with moving sensitive information outside the firewall, or allowing people from outside the organisation to access information inside the firewall for a particular collaboration project.

Weiss outlined the concerns he has experienced from customers with existing collaboration methods: ‘We can create a space in your system and give your collaborators access to it. You open up the firewall and the ports – and that kind of makes them (customers) nervous.’ He explained why the SaaS model was such an attractive proposition especially for sensitive industries like pharmaceuticals: ‘The ability to spin up these open public spaces that are managed by your vendor, that allow people to safely collaborate and share content, but also allow you to extract that content back into your own infrastructure when you see fit.’

Dotmatics’ Gallagher has experienced similar requests for SaaS to promote innovative collaboration. He said: ‘We have seen a trend whereby many large pharma and chemical organisations with important internal IT infrastructure, choose to extend it with SaaS systems that enable them to work seamlessly with collaborators across the world.’

He added: ‘Not only does the SaaS model provide a safe framework to exchange data between organisations, but it enables true collaborative research with real-time knowledge sharing between researchers.’
A comprehensive list of suppliers, consultants and integrators

3rd Millennium Inc
www.3rdmill.com

AAC Infotray AG
www.limsophy.com

Accelerated Technology Laboratories Inc
www.atlab.com

AcquiData, Inc.
www.acquidata.com

Adifo N.V.
www.adifo.be

Advanced Technology Corporation
www.vetstar.com

Advanced Technical Software
www.ats-vienna.com

Agaram Instruments
www.agaramindia.com

AgileBio SARL
www.labcollector.com

Agilent Technologies
www.agilent.com

Agilent Technologies France
www.agilent.com

AJ Biomesystem
www.aj-biomesystem.com

AllMax Software Inc
www.allmaxsoftware.com

Ambidata
www.labway-lims.com

Amphora Research Systems Ltd
ein.bz/scw12

Analytical Information Systems Ltd
www.ais-lims.com

ASM Soft
www.asm.es

Assaynet Inc
www.assaynet.com

AssurX Inc
www.assurx.com

Astrix Technology Group
www.astrixtechgroup.com

Asystance
www.asystance.nl

Aurora Systems Inc
www.visualab.com

Automated Systems Inc
www.automatedsys.com

Automation & Validation Solutions (AVS) Inc
www.avs3.com

Automsoft
www.automsoft.com

Accelrys, Inc.
5005 Wateridge Vista Drive,
San Diego, CA 92121, USA
Tel: +1 858 799 5000
Fax: +1 858 799 5100
info@accelrys.com • www.accelrys.com

Accelrys, a leading scientific enterprise R&D software and services company, has more than 1,300 customers in the pharmaceutical, biotechnology, energy, chemicals, aerospace, consumer packaged goods and industrial products industries. Through its Enterprise R&D Architecture, Accelrys enables scientific innovators to access, organise, analyse and share data in unprecedented ways, enhancing innovation, improving productivity and compliance, reducing costs and speeding time from lab to market.

ACD/Labs (Advanced Chemistry Developments, Inc)
8 King Street East, Suite 107
Toronto, ON, M5C 1B5
Canada
Tel: +1 (416) 368 3435
Fax: +1 (416) 368 5596
info@acdlabs.com • www.acdlabs.com

ACD/Labs’ off-the-shelf enterprise and desktop knowledge management software solution preserves the chemical context of spectral and chromatographic interpretations, turning data into knowledge; and enables sharing of live projects that can be reanalysed and re-used. This unique multi-technique, multi-vendor analytical and chemical data management platform seamlessly integrates into your cheminformatics environment and empowers collaborative science.

Autoscribe Limited
Wellington House,
Riseley Business Park,
Basingstoke Road,
Riseley, Berkshire RG7 1NW, UK
Tel: +44 (0) 118 984 0610
Fax: +44 (0) 118 984 0611
www.autoscribeinformatics.com

Comprehensive and genuine configurability, without resorting to writing custom code or using a programming script, is a rare commodity in the LIMS business, but it is the key to a successful LIMS implementation. Autoscribe is a world leader in the development and supply of genuinely configurable software solutions for LIMS, tracking and quality management applications.
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baytek International</td>
<td>www.baytekinternational.com</td>
</tr>
<tr>
<td>Baze Technology AS</td>
<td>www.bazetechology.com</td>
</tr>
<tr>
<td>BCM Corporation</td>
<td>www bcm corporation com</td>
</tr>
<tr>
<td>Beyontics</td>
<td>www.beyontics.com</td>
</tr>
<tr>
<td>Bibby Scientific</td>
<td>www.bibby-scientific.com</td>
</tr>
<tr>
<td>Bika Lab Systems</td>
<td>www.bikalabs.com</td>
</tr>
<tr>
<td>Biomax Informatics AG</td>
<td>www.biomax.com</td>
</tr>
<tr>
<td>BioMedion Europe</td>
<td>www.biomedical.com</td>
</tr>
<tr>
<td>BizzApps</td>
<td>www.bizzapps.com</td>
</tr>
<tr>
<td>Blaze Systems Corporation</td>
<td>www.blazesystems.com</td>
</tr>
<tr>
<td>Bridge-Soft</td>
<td>www.bridge-soft.com</td>
</tr>
<tr>
<td>Broughton Laboratories Ltd</td>
<td>www.broughtonlaboratories.co.uk</td>
</tr>
<tr>
<td>BSSN Software</td>
<td>www.bssn-software.de</td>
</tr>
<tr>
<td>Bytewise AB-o3Lims</td>
<td>www.o3lims.com</td>
</tr>
<tr>
<td>Caliber Technologies Pvt. Ltd.</td>
<td>www.caliberindia.com</td>
</tr>
<tr>
<td>CAQ AG</td>
<td>www.caq.de</td>
</tr>
<tr>
<td>Cerno Bioscience</td>
<td>www.cernobioscience.com</td>
</tr>
<tr>
<td>ChemSW</td>
<td>www.chemsw.com</td>
</tr>
<tr>
<td>Chemtech</td>
<td>www.chemtech.com.br</td>
</tr>
<tr>
<td>Chemware Automated Laboratory Solutions</td>
<td>www.chemware.com</td>
</tr>
<tr>
<td>Chromasoft GmbH</td>
<td>www.chromasoft.de</td>
</tr>
<tr>
<td>Cimarron Software Inc</td>
<td>www.cimsoft.com</td>
</tr>
<tr>
<td>CIMCON Software Inc</td>
<td>www.part11solutions.com</td>
</tr>
<tr>
<td>CimQuest-Vantage</td>
<td>www.cqv-llc.com</td>
</tr>
<tr>
<td>Clarkston Group</td>
<td>www.clarkstongroup.com</td>
</tr>
<tr>
<td>Clinical Systems Ltd</td>
<td>www.clinical-systems.co.uk</td>
</tr>
<tr>
<td>CLONDIAG GmbH</td>
<td>www.clondiag.com</td>
</tr>
<tr>
<td>Coda Corp USA</td>
<td>www.codacorpusa.com</td>
</tr>
<tr>
<td>Common Cents Systems</td>
<td>www.apollolims.com</td>
</tr>
<tr>
<td>Computer Sciences Corporation (CSC)</td>
<td>www.csc.com</td>
</tr>
<tr>
<td>Computing Solutions Inc</td>
<td>www.labsoftlims.com</td>
</tr>
<tr>
<td>Core Informatics</td>
<td>www.coreinformatics.com</td>
</tr>
<tr>
<td>Cresset Group</td>
<td>www.cresset-group.com</td>
</tr>
<tr>
<td>CSols Ltd</td>
<td>www.csols.com</td>
</tr>
<tr>
<td>CSS Dresden</td>
<td>www.cssdresden.de</td>
</tr>
<tr>
<td>Da Vinci Europe laboratory solutions B.V.</td>
<td>www.davincieurope.com</td>
</tr>
<tr>
<td>Data Unlimited International Inc</td>
<td>www.duii.com</td>
</tr>
<tr>
<td>Dataworks Development</td>
<td>www.freezerworks.com</td>
</tr>
<tr>
<td>DeltaSoft, Inc</td>
<td>www.deltasoftinc.com</td>
</tr>
</tbody>
</table>
Eusoft srl
M. Partipilo 38, 70124 Bari, Italy
Tel: +39 080 5426799
Fax: +39 080 5508740
info@eusoft.it www.eusoft.it

Eusoft, since 1997, is a leading company that is specialized in creating software for the management of testing laboratories (Laboratory Information Management System), in order to comply with the quality standards such as ISO/IEC 17025, ISO 9001 and FDA 21 CFR part 11. Design, development and maintenance of the Eusoft.Lab LIMS have always been the core business of Eusoft. Eusoft.Lab 10 is a real “cloudy ready” LIMS and one of the few in the world. Eusoft.Lab 10 is available both on premises and as Saas (Software as a service) on cloud computing platforms. With Eusoft.Lab LIMS in Cloud you can reduce start up time and speed up ROI, access to services at all times and in all places, have the lastest update version, high scalability and highest data protection.

Dotmatics
The Old Monastery, Windhill, Bishops Stortford Hertfordshire CM23 2ND
Tel: +44 (0) 1279 654123
Fax: +44 (0) 1279 653 088
www.dotmatics.com

Dotmatics has rapidly emerged as the preferred informatics supplier to the world’s largest Pharmaceutical, Biotechnology, Chemical and Academic organisations. The Dotmatics Enterprise Platform is a scalable and high quality informatics system. Dotmatics web-based knowledge solutions transform the way in which scientific data is queried, managed, analysed and shared within organisations.

Eusoft GmbH
www.eusoft-software.com
entimo AG
www.entimo.com
eOrganized World
www.eorganizedworld.com
EthoSoft, Inc.
www.ethosoft.com
Eusoft
www.eusoft.it
Evernote Corp.
www.evernote.com
EZQuant Ltd.
www.ezquant.com
Feltham Associates
www.fal.org.uk
Fkon Consulting
www.fkon.de

FLSmidth Automation
www.flsmithd.com
Future Technologies
www.ftechi.com
GenoLogics Life Sciences Software
www.genologics.com/products
GXPI
www.gxpi.com
GUS Group
www.gus-group.com
GyroDimensions Inc
www.gyrodimensions.com
H M Software
www.hm-software.de
Hach
www.hach.com
iAdvantage Software
www.iadvantagesoftware.com

ICD. Vertriebs Gmbh
Augustinusstr. 9d
50226 Frechen, Germany
Tel: +49 2234 966 34 0 Fax: +49 2234 966 34 90
info@icd.eu www.icd.eu

ICD is an ISO certified software firm and specialised in providing of innovative and complete laboratory software solutions with associated top-level consulting and first-class support services to laboratories of different industry sectors since 1986. More than 300 companies worldwide rely on our core products the multi-functional and multi-purpose Enterprise LIMS platform LABS/Q, the SAP Middleware LABS/QM for interfacing of any analytical instrument to SAP QM, and VALIDAT as the world-leading software tool for validation of analytical methods. We further improved our portfolio with Agilent’s OpenLAB ECM SDMS, ELN and CDS, to provide the always ideal and complete laboratory software solution to our customers.
By offering innovative products onto the market, fast and at a fair price, manufacturers can gain a true competitive edge that creates the necessary revenue to fuel further innovation.

Only when a company is able to secure a leadership position in this way, is it able to create a platform for sustainable profitability needed to invest in fundamental research.

Innovation and manufacturing efficiency is the key to success.

By offering innovative products onto the market, fast and at a fair price, manufacturers can gain a true competitive edge that creates the necessary revenue to fuel further innovation.

Only when a company is able to secure a leadership position in this way, is it able to create a platform for sustainable profitability needed to invest in fundamental research.

Innovation and manufacturing efficiency is the key to success.
IDBS
2 Occam Court, Surrey Research Park, Guildford, Surrey, GU2 7QB, UK
Tel: +44 (0)1483 595000
Fax: +44 (0)1483 595001
info@idbs.com • www.idbs.com

Our software improves efficiency, collaboration and innovation across R&D. The world’s leading organisations rely on our enterprise platform and applications to generate, share and secure their valuable information assets. It has never been more important to simplify IT infrastructure, improve personal productivity and make data driven decisions.

IMCOR GmbH
Turnackerstr. 62/1
70794 Filderstadt, Germany
Tel: +49 (0)711 7089 003
Fax: +49 (0)711 7089 004
lims@imcor.de • www.imcor.de

IMCOR is a specialised consulting company with a focus in IT applications for laboratories. Its services are tailored according to the customer’s needs, e.g. vendor-independent consulting for LIMS and related products, development of user requirement specifications, system selection or laboratory workflow analysis and optimisation to prepare for a successful system implementation.

LabLogic Systems Limited
Paradigm House
3 Melbourne Avenue
Broomhill, Sheffield
S10 2QJ, UK
Tel: +44 (0)114 266 7267
Fax: +44 (0)114 266 3944
solutions@lablogic.com • www.lablogic.com

LabLogic is a market leader in the supply of LIMS and chromatography data systems to the pharmaceutical, agrochemical and nuclear/PET industries. Key systems include Debra for ADME metabolism studies and PETra for PET radiopharmaceutical production. Our products help our customers accelerate their research, providing quality data using industry standard solutions.

LabWare
Denzell Lodge,
Altrincham, Cheshire,
WA14 4QE
Tel: +44 (0)161 927 5600
Fax: +44 (0)161 927 5601
infoeu@labware.com • www.labware.com

LabWare provide a full-featured enterprise laboratory platform incorporating LabWare LIMS and ELN. LabWare LIMS is supplied with an extensive range of application modules and integrated instrument data acquisition delivering real value and business advantage. LabWare focuses on customer success, providing a global support and services network backed by some of the most experienced LIMS professionals in the world.

LABVANTAGE Solutions
265 Davidson Avenue,
Suite 220, Somerset,
NJ 08873, USA
US Toll Free: (888) 346-5467 Tel: +1 (908) 707-4100
www.labvantage.com/contact • www.labvantage.com

Headquartered in Somerset, NJ, LABVANTAGE offers a comprehensive portfolio of laboratory products and services, including LIMS, quality ELN, business intelligence, legacy system migration, global laboratory harmonization, and laboratory business intelligence derived from disparate sites and systems. Our industry-leading solutions and world-class services are based on 30+ years of laboratory informatics knowhow, leveraged with state of the art technology to redefine and optimize how laboratories conduct business. With a proven track record of delivering ROI, we drive the success of your business with best technical and domain expertise available.

ItemTracker (UK) Ltd
www.itemtracker.co.uk

iVention
www.ivention.nl

J & R Consulting Inc
www.jandrconsult.com

JusticeTrax Inc
www.justicetrax.com

JW Consulting
www.jwconsulting.eu

Khemia Software Inc
www.khemia.com

KineMatik
www.kinematik.com

LabAnswer
www.labanswer.com

LabArchives
www.labarchives.com

LabCentrix LLC
www.labcentrix.com

Labkey
www.labkey.com

LabLite LLC
www.lablite.com

LabLogic Systems Ltd
www.lablogic.com

LabLynx Inc
www.lablynx.com

Laboratory Systems Consulting
www.lims.ie

LabPlus Technologies
www.labplustech.com

LABTrack, LLC
www.labtrack.com

LabPro 2000 Limited
www.labpro2000.com

Labs Division Grupo Same.
www.gruposame.com

Labtronics Inc
www.labtronics.com

LabWare
www.labware.com

LabVantage Solutions inc
www.labvantage.com

Ltech Australia Pty
www.lims1.com

MAQSIMA GmbH
www.maqsima.de

MasterControl Inc.
www.mastercontrol.com

McDowell Consulting
www.rdmcdowell.com

Medidata Solutions Worldwide
www.mdsol.com

Mettler Toledo
www.mt.com

Mikon AS
www.mikon.ro

Modul-bio
www.modul-bio.com

Mountain States Consulting LLC
www.msc-lims.com
MARK THE DATE
NEW: SPECIAL ISSUES IN 2014

Building a Smart Laboratory
Published May 2014
- Aimed at newcomers to the concept of smart lab
- Covering data acquisition, data management and lab integration
- Year-round relevance
- Multiple distribution outlets

HPC Special 2014-15
Published November 2014
- In-depth look at use of HPC in science and engineering
- Extensive coverage of SC14 and MEW
- Bonus distribution at above events
- Directory listings for year-round relevance

Get your company’s message across by advertising in these special issues.
Contact Darren Ebbs darren.ebbs@europascience.com (+44 1223 275465)
or Sarah Ellis-Miller sarah.ellis.miller@europascience.com (+44 1223 275465)
to discuss a financial package to suit your needs.

Do you compute?
Scientific Computing World is the only global publication for scientists and engineers using computing and software in their daily work.
If you need to know about computing for engineering and science, then you need to read Scientific Computing World.

REGISTER ONLINE NOW
www.scientific-computing.com/subscribe

*Subscription is free for qualifying individuals
Published by Europa Science Ltd, 9 Clifton Court, Cambridge CB1 7BN, UK
Tel: +44 (0)1223 211170, www.europascience.com
Modul-Bio

163 avenue de Luminy - Case 935, Parc Scientifique Luminy Biotech II, 13288 Marseille cedex 09, France

Tel: +33 4 91 82 82 50
info@modul-bio.com • www.modul-bio.com

MBioLIMS® BioBanking is a flexible LIMS dedicated to biobanks and cohorts studies.

This 100% web-based software solution provides perfect traceability of biospecimen from reception to shipment. Main functionalities include patient management, sample collection, processing, analysis, storage, distribution and more.

Moxie Informatics

www.moxieinformatics.com

Northwest Analytics

www.nwasoft.com

NotebookMaker, LLC

www.notebookmaker.com

Novatek International

www.ntint.com

NXG Group

www.nxgroup.com

Osthus GmbH

Eisenbahnweg 9-11
D-52068 Aachen
Tel: +49(0)241 94314-0
Fax: +49(0)241 94314-19
office@osthus.de
www.osthus.com

Osthus is a leading global systems integrator specializing in process and data integration for R&D in life sciences and related industries. We offer complete application life cycle support with consulting, development, integration, operations and maintenance services to leading companies worldwide. By using our partner portfolio and own components we deliver innovative, reliable and cost saving projects for ELN, LIMS, R&D data warehousing and ECM business solutions.

Optibrium

www.optibrium.com

Orga Lab GmbH

www.orgalab.de

Oscium Biosolutions

www.osciumbio.com

Odyssey SA

www.odyssey.com

Online LIMS Canada Ltd

www.online-lims.com

Open.Co S.r.l.

www.openco.it

PerkinElmer

940 Winter Street
Waltham, MA 02451, USA
Tel: +1 (781) 663-6900
informatics.customer_service@perkinelmer.com
www.perkinelmer.com/informatics

PerkinElmerInformatics delivers software and services globally for research, discovery, analysis and collaboration across multiple industries including biopharmaceutical, food and chemical industries, academia and government. PerkinElmer’s Ensemble platform, now with TIBCO Spotfire®, supports crucial informatics research and development activities. Products include ChemBioOffice®, ChemDraw®, E-Notebook and LES systems for knowledge management and integrated laboratory systems.

Procyrion Software, LLC

www.procyrion.com

Promadis

www.promadis.com

Promium

www.promium.com

Quatto Research

www.quatto-research.com

RDS Northeast

www.rds-nordest.it

Rescentris

www.rescentris.com

RJ Lee Solutions

www.rjls.com

Ruro

www.ruro.com

Sapios Sciences

www.sapiosciences.com

ScarabTEC GmbH

www.scarabtec.com

quattro research GmbH

Am Klopferspitz 19
82152 Martinsried
Germany
Tel: +49 (0)89 990 1629 0
info@quattro-research.com • www.quattro-research.com

Software Solutions for Life Science and Chemistry

Business analysis and consulting, data management and integration, data warehousing, electronic lab notebook, etc. We provide either tailoring of our standard products or completely new developments. We help to build new solutions, assist in optimizing and integrating existing systems and offer maintenance for the whole life cycle of your data management system.
Pittcon is the leading conference and exposition for the latest advances in Laboratory Science. Attending Pittcon gives you a unique opportunity to get a hands-on look at cutting-edge product innovations from leading companies. Participate in any of the more than 2,000 technical presentations to learn about recent discoveries from world-renowned members of the scientific community. Improve or develop your skills by taking a short course taught by industry experts.

For more information on technical sessions, exhibitors and short courses, visit www.pittcon.org.
Thermo Fisher Scientific

1 Saint George’s Court
Altrincham Business Park, Altrincham WA14 5TP, UK
Tel: +44 (0)161 942 3000 Fax: +44 (0)161 942 3001
marketing.informatics@thermofisher.com
www.thermoscientific.com/informatics

Thermo Fisher Scientific is the worldwide leader in laboratory software and related services, providing enterprise-wide multi-laboratory solutions that have become the corporate standard at leading organisations. The company’s Thermo Scientific LIMS, CDS, ELN and document management systems are facilitating laboratory data in the world’s leading pharmaceutical companies, petrochemical, and other major industries.

To support its global installations, the company provides implementation, validations, training, maintenance, and support from the industry’s largest worldwide informatics services network.

Spectra QEST Australia Pty Ltd
www.spectraqest.com.au

STaCS DNA, Inc.
www.stacsdna.com

Starlims
www.starlims.com

Stone Bond Technologies
www.stonebond.com

Studylog Systems, Inc.
www.studylog.com

Sylab Mediterranea
www.sylabinternational.com

T&P Triestram und Partner GmbH
www.t-p.com

TAL Technologies
www.taltech.com

Techware Incorporated
www.techwareinc.com

Teranode Corp
www.teranode.com

Textco BioSoftware Inc
www.textco.com

Timeless Medical Systems
www.timelessmedical.com

Titian Software
www.titian.co.uk

Tracking Solutions, Inc.
www.trackingsolutionsinc.com

TraxStar Technologies, LLC
www.traxstar.com

Tripos International
www.tripos.com

Two Fold Software
www.twofold-software.com

UNICConnect LC
www.uniconnect.com

United Bioinformatica Inc. (UBI)
www.ubi.ca

up to data professional services GmbH
www.uptodata.com

Validation Systems Inc
www-validationsystems.com

Velquest Corp
www.velquest.com

Vertere
www.vertere.com

Waters Corporation
www.waters.com

Wavefront Software
www.wavefrontsoftware.com

Werum Software & Systems AG
www.werum.com

White Point Systems, Inc.
www.whitepointsystems.com

Xenoco
www.xenco.com

Xyntek, Inc.
www.xyntekinc.com

Satyam Computer Services Ltd
www.satyam.com

Sciformatics
www.sciformatics.com

Scimcon
www.scimcon.com

Segalstad Consulting AS
www.limsconsultant.com

Sibio
www.sibio.fr

Sofcom (Private) Limited
www.sofcom.net

Softtrace Ltd
www.soft-trace.com

Software Point
www.softwarepoint.com

Softwaresysteme Keeve GmbH
www.keeve.de

Sparta Systems, Inc.
www.spartasystems.com

Siemens

Demeurslaan 132,
1854 Huizingen,
Belgium
Tel: +32 2 536 2111
Fax: +32 2 536 4350
industrial-it.swe@siemens.com
www.siemens.com/industrial-it/rd

SIMATIC IT &D Suite is a scalable software platform to cover all R&D activities. It includes functionality for project management, formula and packaging development, trial and experiment management, production process design, electronic notebooks, quality control, laboratory management, specification management, batch and inventory management, and pilot plant manufacturing.
To enable today’s laboratories to be more flexible, efficient and compliant than ever, software must empower users and demonstrably improve productivity across a connected enterprise.

The hardest working LIMS in the industry now has advanced new tools and user-interface enhancements that improve laboratory process mapping management and automation.

SampleManager 11 puts decision-making power where it belongs, in the hands of users who can make logical choices about workflow, instrument integration and data reporting for management metrics or regulatory requirements.

Workflow capabilities simplify implementation, allowing lab managers to easily model their processes in SampleManager. As laboratory needs evolve, workflows can be modified to change with them.

SampleManager 11 At a Glance:

- Configurable workflow and extended lifecycle features
- Simplified Sample Login user interface providing easy access to frequently used functions
- Flexibility in splitting and merging aliquots and samples
- User-Friendly Search Syntax, new Internet Explorer® features and improved support for Windows® 7 and 8
- Files, web links and attachments for any entity available for inclusion in reports

For more information about SampleManager 11, please visit us at www.thermoscientific.com/SM11 or email us at marketing.informatics@thermofisher.com
LIMS without Boundaries
Browser independent
Database independent
Hardware independent
Location independent

ENTERPRISE LABORATORY PLATFORM

lims eln

Offices worldwide supporting customers in more than 90 countries

www.labware.com